Interval Estimate for Specific Points in Polynomial Regressions
نویسندگان
چکیده
This paper presents the interval estimate for specific points in polynomial regression: zero of a linear regression, abscissa of the extreme of a quadratic regression, abscissa of the inflection point of a cubic regression. Two different approaches are under study. An application of these two approaches based on quadratic regression in presented: interval estimate for the plant density giving optimal yield of maize is under consideration.
منابع مشابه
An approximate method for solving fractional system differential equations
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملA ph mesh refinement method for optimal control
A mesh refinement method is described for solving a continuous-time optimal control problem using collocation at Legendre–Gauss–Radau points. The method allows for changes in both the number of mesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of ...
متن کاملVariable-Order Mesh Refinement for Solving Optimal Control Problems Using an Integral Legendre-Gauss-Radau Collocation Method
A mesh refinement method is described for solving a continuous-time optimal control problem using collocation at Legendre-Gauss-Radau points. The method allows for changes in both the number of mesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of ...
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CIT
دوره 13 شماره
صفحات -
تاریخ انتشار 2005